Classification of brain signal (EEG) induced by shape-analogous letter perception
نویسندگان
چکیده
منابع مشابه
Eeg Signal Classification
The article describes the classification of simple movements using a system based on Hidden Markov Models (HMM). Brisk extensions and flexions of the index finger, and movements of the proximal arm (shoulder) and distal arm (finger) were classified using scalp EEG signals. The aim of our study was to develop a system for the classification of movements which show EEG changes at identical scalp ...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملInvestigating shape perception by classification images.
Radial frequency (RF) patterns are circular contours where the radius is modulated sinusoidally. These stimuli can represent a wide range of common shapes and have been popular for investigating human shape perception. Theories postulate a multistage model where a global contour integration mechanism integrates the outputs of local curvature-sensitive mechanisms. However, studies on how the loc...
متن کاملEEG Signal Classification with Different Signal Representations
If several mental states can be reliably distinguished by recognizing patterns in EEG, then a paralyzed person could communicate to a device like a wheelchair by composing sequencesof these mental states. In this article, we report on a study comparing four representations of EEG signals and their classification by a two-layer neural network with sigmoid activation functions. The neuralnetwork ...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Engineering Informatics
سال: 2019
ISSN: 1474-0346
DOI: 10.1016/j.aei.2019.100992